
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1801085 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 634

Lexical and Syntax Analysis in Compiler Design

Vishal Trivedi

Gandhinagar Institute of Technology, Gandhinagar, Gujarat, India

Abstract — This Research paper gives brief information on how

the source program gets evaluated in Lexical analysis phase of

compiler and Syntax analysis phase of compiler. In addition to

that, this paper also explains the concept ofCompiler and Phases of

Compiler. Mainly this paper concentrates on Lexical analysis and

Syntax analysis.

Keywords —Token, Lexeme, Identifier, Operator, Operand,

Sentinel, Prefix, Derivation, Kleene closure, Positive closure,

Terminal, Production rule, Non-terminal, Sentential.

I. INTRODUCTION

Whenever we create a source code and start the process of

evaluating it, computer only shows the output and errors (if

occurred). We don’t know the actual process behind it. In this

research paper, the exact procedure and step by step

evaluation of source code in Lexical and Syntax Analysis are

explained. In addition to that touched topics are Index Terms,

Compilers, Phases of Compiler, Operations on grammar,

Lexical analysis, Roll of Scanner, Finite automata, Syntax

analysis, Types of Derivation, Ambiguous grammar, Left

recursion, Left factoring, Types of Parsing, Top Down

Parsing, Bottom Up Parsing, Error Handling.

II. INDEX TERMS

Token refers to sequence of character having a collective

meaning. Token describes the class or category of input string.

Typical Tokens are Identifiers, Operators, Special symbols,

Constants etc. Pattern refers to the set of rules associated with a

token.Lexeme refers to the sequence of characters in source

code that are matched with the pattern of tokens. Example: int,

i, num etc. Sentinel refers to the end of buffer or end of token.

Regular expressions used to construct finite automata which is

used to Token recognition.

III. COMPILERS

Compiler reads whole program at a time and generate errors (if

occurred). Compiler generates intermediate code in order to

generate target code. Once the whole program is checked, errors

are displayed. Example of compilers are Borland Compiler,

Turbo C Compiler. Generated target code is easy to understand

after the process of compilation. The process of compilation

must be done efficiently. There are mainly two parts of

compilation process.

[1] Analysis Phase: This phase of compilation process is

machineindependent. The main objective of analysis phase

is to divide to source code into parts and rearrange these

parts into meaningful structure. The meaning of source

code is determined and then intermediate code is created

from the source program. Analysis phase contains mainly

three sub-phases named lexicalanalysis, syntaxanalysis and

semanticanalysis.

[2] Synthesis Phase: This phase of compilation process is

machinedependent. The intermediate code is taken and

converted into an equivalent target code. Synthesis phase

contains mainly three sub-phases named intermediatecode,

codeoptimization and codegeneration.

Fig. 1Compilers

IV. PHASESOFCOMPILER

 As mentioned above, compiler contains lexical analysis,

syntax analysis, semantic analysis, intermediate code, code

optimization and code generation phases.

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1801085 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 635

Fig. 2Phases of Compiler

V. OPERATIONS

 Єrefers to Empty string.

 Λ or ∅refer to Empty set of string.

 | s | refers to Length of a string.

 Union of L and M written as L U M or L + M

refer to {s | s is in L or s is in M}.

 Concatenation of L and M written as L M

refers to {st | s is in L and t is in M}.

 Kleeneclosure of L written as L*

refers to Zero or More occurrences of L.

 Positiveclosure of L written as L+

refers to One or More occurrences of L.

VI. LEXICAL ANALYSIS

 Lexical Analysis is first phase of compiler.

 Lexical Analysis is also known as Linear Analysis or

Scanning.

 First of all, lexical analyzer scans the whole program and

divide it into Token. Token refers to the string with

meaning. Token describes the class or category of input

string. Example: Identifiers, Keywords, Constants etc.

 Sentinel refers to the end of buffer or end of token.

 Pattern refers to set of rules that describes the token.

 Lexemes refers to the sequence of characters in source code

that are matched with the pattern of tokens. Example: int, i,

num etc.

 There are two pointers in lexical analysis named

Lexemepointer and Forwardpointer.

 In order to perform tokenrecognition, RegularExpressions

are used to construct Finiteautomata which is separate topic

itself.

 Input is sourcecode and output is token.

 Consider an Example:

Input: a=a+b*c*2;

Output: Tokens or tables of tokens

= a

+ b

* c

 2

VII. ROLL OF SCANNER

The lexical analyzer is the first phase of compiler. It’s main task

is to read the input characters and produces a sequence of tokens

as output that parser uses for syntax analysis.

Fig. 3Roll of Lexical Analyzer

VIII. FINITE AUTOMATA

 We compile a regular expression into a recognizer by

constructing a generalized transition diagram called a

finiteautomaton. A finite automata or finitestatemachine is a 5-

tuple (S, ∑, S0, F, δ) where S is finite set of states, ∑ is finite

alphabet of input symbol, S0is initial state, Fis set of accepting

states, δ is a transition function. There are two types of finite

automata.

[1] Deterministic finite automata (DFA) :

For each state, DFA has exactly one edge leaving out for

each symbol.In the theoryofcomputation, a branch of

theoretical computer science, a

deterministicfiniteautomaton also known as a

deterministicfiniteacceptor.

Deterministicfinitestatemachine(DFSM)is a finite-state

machine that accepts and rejects strings of symbols and

only produces a unique computation of the automaton

for each input string.Deterministic refers to the

https://en.wikipedia.org/wiki/Ukrainian_Ye

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1801085 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 636

uniqueness of the computation.

[2] Nondeterministic finite automata (NFA) :

There are norestrictions on the edges leaving a state.

There can be several with the same symbol as label

and some edges can be labeled with ε.A

nondeterministicfiniteautomaton(NFA) or

nondeterministicfinitestatemachine does not need to

obey these restrictions. In particular, every DFA is

also an NFA. Sometimes the term NFA is used in a

narrower sense, referring to a NDFA that is not a

DFA.

IX. SYNTAX ANALYSIS

 Syntax analysis is also known as syntacticalanalysis

or parsing or hierarchicalanalysis.

 Syntax refers to the arrangement of words and

phrases to create well-formed sentences in a

language.

 Tokens generated by lexical analyzer are grouped

together to form a hierarchical structure which is

known as syntaxtreewhich is less detailed.

Fig. 4 Lexical and Syntax Analyzer

 Input is token and output is syntaxtree.

 Grammatical errors are checked during this phase.

Example: Parenthesis missing, semicolon

missing,syntax errors etc.

 For above given example:

 Input: tokens or tables of tokens

= A

+ B

* C

 2

Output:

Fig. 5Syntax Tree

X. TYPES OF DERIVATION

There are mainly two types of derivations which are

Leftmostderivation and Rightmostderivation. Let’sconsider the

grammar with the production S ->S+S | S-S | S*S | S/S |(S))| a

[1] Leftmost derivation :

 A derivation of a string W in a grammar G is a left most

derivation if at every step the leftmostnon-terminal

isreplaced.

 Consider string : a*a-a

S ->S-S

S*S-S

a*S-S

a*a-S

a*a-a

 Equivalent left most derivation tree

S

[2] Rightmost derivation :

 A derivation of a string W in a grammar G is a right

most derivation if at every step the rightmostnon-

terminal isreplaced.

 Consider string: a-a/a

S ->S-S

S-S/S

S-S/a

S-a/a

a-a/a

 Equivalent Right most derivation tree

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1801085 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 637

XI. AMBIGUIOUS GRAMMER

An ambiguous grammar is one that produces more

than one leftmost or more than one rightmost derivation for

the samesentence. In general, ambiguous grammar can

generate more than one parse tree.

S -> S+S S -> S+S

a + S S + S + S

a + S + S a + S + S

a + a + S a + a + S

a + a + a a + a + a

XII. LEFT RECURSION

Left hand side of terminal in right hand side of

production rule is same as non-terminal on left hand side of

production rule. i.e. A -> Aa|b. Left recursion should not be

there in grammar or production rule. In order to remove this

leftrecursion, convert it into rightrecursion.

A -> bA'

 A’ -> aA'|Є

XIII. LEFT FACTORING

Left factoring is kind of same as commonprefix. i.e.A -

> aB1|aB2|aB3. Left factoring should not be there in grammaror

production rule. To remove this left factoring,

 A -> aE

 E -> B1|B2|B3

XIV. TYPES OF PARSING

There are mainly two types of parsing techniques.

[1] Top Down Parsing

[2] Bottom Up Parsing

Fig. 6Types of Parsing Techniques

XV. TOP DOWNPARSING

 Root to leaves

 LL Parser

 Left most derivation

 Derivation Process (Sentential)

 Less Complex

 Simple to implement

 Doesn’t work with NFA

 Doesn’t support recursion

 Common prefix not supported

 Applicable to small languages

 i.e. E

 id + id + id

XVI. BOTTOM UP PARSING

 Leaves to root

 LR parser

 Right most derivation

 Reduction process

 High complex

 Complex to implement

 Works with NFA

 Supports recursion

 Common prefix supported

 Applicable to broad class of languages

i.e. id + id + id

 E

https://en.wikipedia.org/wiki/Ukrainian_Ye

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1801085 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 638

XVII. ERROR HANDLING

 Each and every phase of compiler detects errors which

must be reported to error handler whose task is to handle the

errors so that compilation can proceed. Lexical errorscontain

spelling errors, exceeding length of identifier or numeric

constants, appearance of illegal characters etc. Syntax errors

contains errors in structure, missing operators, missing

parenthesis etc. Semantic errorscontain incompatible types of

operands, undeclared variables, not matching of actual

arguments with formal arguments etc. There are various

strategies to recover the errors which can be implement by

analyzers.

Fig. 7Error Handler

XVIII. CONCLUSION

 To conclude this research, source program has to pass

and parse from all sections of compilers to be converted into

predicted target program. After studying this research paper,

one can understand the exact procedure and step by step

evaluation of source code in Lexical and Syntax

Analysiswhich containIndex Terms, Compilers, Phases of

Compiler, Operations on grammar, Lexical analysis, Roll of

Scanner, Finite automata, Syntax analysis, Types of

Derivation, Ambiguous grammar, Left recursion, Left

factoring, Types of Parsing, Top Down Parsing, Bottom Up

Parsing, Error Handling.

ACKNOWLEDGMENT

I am using this opportunity to express my gratitude to

everyone who supported me in this research. I am thankful for

their aspiring guidance, invaluably constructive criticism and

friendly advice during the research. I am sincerely grateful to

them for sharing their truthful and illuminating views on a

number of issues related to the research work.

REFERENCES

[1] Wikipedia - Available on :

https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

https://en.wikipedia.org/wiki/Compiler

[2] Diagrams and Flowcharts – Available on : https://www.draw.io/s

[3] Vishal Trivedi – ―Life Cycle of Source Program – Compiler

Design‖ – International Journal of Creative Research and Thoughts

– Volume 5 – Issue 4 November 2017 – Paper ID : IJCRT1704159

– ISSN : 2320-2882

[4] Mrs. Anuradha A. Puntambekar – ―Compiler Design‖ - Technical

Publication – Second Revised Edition August 2016

[5] Darshan Institute of Engineering and Technology – Study Materials

Available on :

http://www.darshan.ac.in/Upload/DIET/Documents/CE/2170701_C

D_Sem%207_GTU_Study%20Material_15112016_100740AM.pdf

[6] Tutorials Point – Available on :

https://www.tutorialspoint.com/compiler_design/compiler_design_s

ymbol_table.htm

[7] Dr. Matt Poole and Mr. Christopher Whyley –―Compilers‖ -

Department of Computer Science – University of Wales Swansea,

UK

[8] Neha Pathapati, Niharika W. M. and Lakshmishree .C –

―Introduction to Compilers‖ – International Journal of Science and

Research – Volume 4 – Issue 4 April 2015 - Paper ID: SUB153522

- ISSN 2319-7064

[9] Charu Arora, Chetna Arora, Monika Jaitwal – ―RESEARCH

PAPER ON PHASES OF COMPILER‖ – International Journal of

Innovative Research in Technology – Volume 1 – Issue 5 2014

ISSN : 2349-6002

[10] Aho, Lam, Sethi, and Ullman – ―Compilers: Principles, Techniques

and Tools‖ - Second Edition, Pearson, 2014

